Taking It to a New Dimension: New Lens Design for Snappier 3D Imaging

 

Shooting high definition 2D as well as 3D movies with the same lens is now possible, according to new study by Korean scientists

 

Light-field imaging is an emerging technology by which pictures with 3D features are obtained. However, the low resolution of existing light-field imaging technologies limits application in commercial portable or compact imaging systems, such as mobile phone cameras or endoscopic 3D imaging. Now, scientists from Korea have developed a new lens system that can switch between high-resolution 2D imaging and 3D light-field modes quickly and consistently, allowing for extraction of both 2D and 3D high definition moving pictures from a single take.

 

KNUDC_3_4_Infographic_Jul_17_2020.jpg 경북대학교 Display / Organic Electronics Lab.

 

 

This has probably happened to you a few times: You take a picture and an otherwise beautiful portion of the scene is out of focus. If you try to focus on that zone in the next shot, another part of the picture becomes out of focus. This is a limitation of conventional digital photography. The use of a fixed lens for each shot implies constant focal length and depth of field, meaning that only objects within a certain distance range are in focus in any given photo. While modern cellphone cameras can shoot many pictures at different focal lengths in quick succession and stack them to produce an “all-in-focus” composite image, this process is too slow for shooting videos or capturing objects moving rapidly.

 

There is, however, an alternative technology that can solve some of these problems. Light-field imaging is a modern technique for capturing 3D information from the scene being imaged. This is typically done using a microlens array, a matrix of smaller lenses placed right in front of the image sensor. Each tiny lens captures the same scene from a unique direction and projects its view onto the image sensor. This “plurality” of information is then digitally compiled to create an image with 3D features. Pictures generated this way can not only be re-focused after shooting (similar to the ‘all-in-focus’ 2D images), but also rotated as if they had been taken from slightly different directions.

 

Although light-field imaging is certainly attractive, one of its main problems is that the resolution of the final image is much lower than that of conventional 2D pictures taken with modern cameras, which limits its commercial applications. To overcome this limitation, Professor Hak-Rin Kim and his team from Kyungpook National University, Korea, recently developed a unique lens system that can breathe new life into this promising 3D imaging technique. Their study is published in IEEE Transactions on Industrial Electronics.

 

The proposed system comprises a polarization-dependent microlens array, which is an array that is either active or inactive (transparent) depending on the polarization of the incident light. Meanwhile, the polarization of light—a property related to the orientation of light waves as they travel through space—can be rapidly controlled through switchable polarizers. In this way, the lens system can switch between 2D and 3D imaging modes in less than 300 microseconds.

 

The purpose of being able to rapidly switch between imaging modes is to allow users to seamlessly take 2D and 3D shots of the same scene, at rates fast enough for the extraction of high definition static and moving pictures of moving objects. As Prof Kim explains, “To overcome the barriers to the commercialization of light-field imaging, we have to provide its additional functionalities without sacrificing the 2D high-resolution capabilities expected of modern cameras. Our switchable microlens array can provide both functional light-field images and high-resolution 2D images at framerates appropriate for capturing moving objects.

 

What’s more, this developed lens system is compact and can be fabricated through a reliable and cost-effective process. Prof Kim envisions a wide variety of applications where their system would be impactful: “Our light-field imaging scheme, compatible with video framerates, could be implemented in bioimaging microscopes, miniature endoscope systems, and mobile camera modules. Most notably, robot vision systems and smart drones, which require real-time 3D information about their environment for self-control, may really benefit from our fast-switching microlens array.

 

This work, which brings a new perspective to light-field imaging, could mark the first step towards widespread adoption of this technique in digital photography and high-resolution imaging.

 

 

 

Reference

Authors:

Kyung-Il Joo1, Min-Kyu Park1, Heewon Park1, Tae-Hyun Lee1, Ki-Chul Kwon2, Young-Tae Lim2, Munkh-Uchral Erdenebat2, Hyun Lee3, Gwangsoon Lee3, Nam Kim2, and Hak-Rin Kim*1

Title of original paper:

Light-Field Camera for Fast Switching of Time-Sequential Two-Dimensional and

Three-Dimensional Image Capturing at Video Rate

Journal:

IEEE Transactions on Industrial Electronics

DOI:

10.1109/TIE.2019.2935992

Affiliations:

1School of Electronics Engineering, Kyungpook National University

2School of Information and Communication Engineering, Chungbuk National University

3Media Research Division, Electronics and Telecommunications Research Institute

 

*Corresponding author’s email: rineey@knu.ac.kr

 

 

About Kyungpook National University

 

Kyungpook National University (KNU) is a national university located in Daegu, South Korea.

Founded in 1946, it is committed to becoming a leading global university based on its proud and lasting tradition of truth, pride, and service. As a comprehensive national university representing the regions of Daegu and Gyeongbuk Province, KNU has been striving to lead Korea’s national and international development by fostering talented graduates who can serve as global community leaders.

 

Website: https://en.knu.ac.kr/main/main.htm

 

 

About Professor Hak-Rin Kim from Kyungpook National University

 

In 2005, Hak-Rin Kim received a PhD in Electrical Engineering from Seoul National University, Seoul, South Korea. He is currently a Professor at the School of Electronics Engineering of Kyungpook National University, Daegu, South Korea, which he joined as a faculty member in 2007. The research interests of his group in the Display/Organic Electronics Laboratory are liquid crystal displays, organic-based electro-optic devices, optics for 3D imaging and 3D displays, and novel fabrication processes for flexible printed electronics.

For more information, please visit https://www.mendeley.com/profiles/hak-rin-kim/

 

번호 제목 글쓴이 날짜 조회 수
22 박사과정 최준찬, 2022년도 대암학술상 수상 (2022. 02.18) 신중엽 2022.10.25 60
21 박사과정 김병곤, 2021 광자기술 학술회의 우수논문상 수상 doe 2021.12.09 121
20 박사과정 최준찬, Materials Today(IF 31.04) 표지논문 게재 doe 2021.12.09 145
19 학부생팀(지도교수 김학린, 후원 삼성전기), 캠퍼스 특허전략유니버시아드 2021 우수상 수상 doe 2021.12.01 160
18 학부생팀(지도교수 김학린, 후원 삼성디스플레이), 2021 캠퍼스 특허전략유니버시아드 우수상 수상 doe 2021.12.01 100
17 김학린 교수, 제 12회 디스플레이의 날 행사에서 학회장상 공로상 수상 doe 2021.12.01 86
16 박사과정 최준찬·이재원, Advanced Engineering Materials 표지논문 게재 및 관련 대외 보도기사 배포 doe 2021.12.01 89
15 학부 FAR 팀(지도교수 김학린), 2020 X-Corps 페스티벌 공학교육혁신센터장상 수상 doe 2021.12.01 63
14 학부 FAR팀(지도교수 김학린), 2020 SE-KNU On line Festival 우수상 수상 doe 2021.12.01 60
13 경북대 전자공학부 학부생팀 (지도교수 김학린) 캠퍼스 특허전략유니버시아드2020 우수상 수상 doe 2021.12.01 72
12 경북대 전자공학부 학부생팀(지도교수 김학린) 캠퍼스 특허전략유니버시아드 2020 특허 전략 부문 우수상 수상 doe 2021.12.01 82
11 석사과정 이수원, 광전자 및 공통신 학회 우수논문상 수상 doe 2021.12.01 66
10 이수원 석사과정, 한국광학회 우수논문상 수상 file doe 2020.10.04 162
» Taking It to a New Dimension: New Lens Design for Snappier 3D Imaging file doe 2020.07.18 145894
8 최준찬 박사과정, Scientific Reports 논문 게재 file doe 2020.07.06 2004
7 주경일 박사, IEEE Transactions on Industrial Electronics 논문 게재 doe 2020.06.03 206
6 주경일 박사, 한국광학회가 선정한 OSK Rising Stars 30 선정 file doe 2020.03.02 222
5 이태현 석사과정, IDW 2019 학술대회 "Outstanding Paper Award" 수상 file doe 2020.03.02 133
4 경북대 팀(지도교수 김학린), '특허전략 최우수 대학’에 선정 file doe 2019.11.25 8945
3 이태현 석사과정, 국제정보디스플레이(IMID 2019) 학술대회 “KIDS AWARD 은상” 수상 file doe 2019.11.06 152
 
우)41566 대구광역시 북구 대학로 80 경북대학교 IT대학 3호관 303호(IT대학4호관과 공대12호관사이)
Tel: 053-940-8622, Fax: 053-950-7211
Copyright(c) Kyungpook National University. All rights reserved.